
Package: flashier (via r-universe)
October 18, 2024

Type Package

Date 2024-10-01

Title Empirical Bayes Matrix Factorization

Version 1.0.54

URL https://github.com/willwerscheid/flashier

BugReports https://github.com/willwerscheid/flashier/issues

Description Methods for matrix factorization based on Wang and
Stephens (2021) <https://jmlr.org/papers/v22/20-589.html>.

Depends R (>= 4.1), ebnm (>= 0.1-21)

Imports Matrix, parallel, dplyr, softImpute, irlba, ggplot2, ggrepel,
fastTopics, cowplot, Polychrome, RColorBrewer, lifecycle, rlang

Suggests ashr, testthat, knitr, rmarkdown, RcppML, rsvd, Rtsne

Remotes stephenslab/ebnm

License BSD_3_clause + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

Repository https://willwerscheid.r-universe.dev

RemoteUrl https://github.com/willwerscheid/flashier

RemoteRef HEAD

RemoteSha 010d3905b3ceb98555cc559652edd80d02e34770

1

https://github.com/willwerscheid/flashier
https://github.com/willwerscheid/flashier/issues
https://jmlr.org/papers/v22/20-589.html

2 Contents

Contents
fitted.flash . 3
fitted.flash_fit . 3
flash . 4
flash_add_intercept . 8
flash_backfit . 9
flash_clear_timeout . 10
flash_conv_crit_elbo_diff . 11
flash_conv_crit_max_chg . 12
flash_conv_crit_max_chg_F . 12
flash_conv_crit_max_chg_L . 13
flash_ebnm . 14
flash_factors_fix . 15
flash_factors_init . 16
flash_factors_remove . 17
flash_factors_reorder . 18
flash_factors_set_to_zero . 18
flash_factors_unfix . 19
flash_fit . 20
flash_greedy . 21
flash_greedy_init_default . 24
flash_greedy_init_irlba . 25
flash_greedy_init_softImpute . 26
flash_init . 26
flash_nullcheck . 27
flash_plot_bar . 28
flash_plot_heatmap . 30
flash_plot_histogram . 31
flash_plot_scatter . 33
flash_plot_scree . 35
flash_plot_structure . 36
flash_set_conv_crit . 37
flash_set_timeout . 39
flash_set_verbose . 40
flash_update_data . 42
flash_verbose_elbo . 43
flash_verbose_elbo_diff . 43
flash_verbose_max_chg . 44
flash_verbose_max_chg_F . 45
flash_verbose_max_chg_L . 46
gtex . 46
gtex_colors . 47
ldf . 48
plot.flash . 49
residuals.flash . 50
residuals.flash_fit . 51

Index 52

fitted.flash 3

fitted.flash Fitted method for flash objects

Description

Given a flash object, returns the "fitted values" E(LF ′) = E(L)E(F)′.

Usage

S3 method for class 'flash'
fitted(object, ...)

Arguments

object An object inheriting from class flash.

... Additional parameters are ignored.

Value

The matrix of "fitted values."

fitted.flash_fit Fitted method for flash fit objects

Description

Given a flash_fit object, returns the "fitted values" E(LF ′) = E(L)E(F)′.

Usage

S3 method for class 'flash_fit'
fitted(object, ...)

Arguments

object An object inheriting from class flash_fit.

... Additional parameters are ignored.

Value

The matrix of "fitted values."

4 flash

flash Empirical Bayes matrix factorization

Description

Fits an empirical Bayes matrix factorization (see Details for a description of the model). The result-
ing fit is referred to as a "flash" object (short for Factors and Loadings using Adaptive SHrinkage).
Two interfaces are provided. The flash function provides a simple interface that allows a flash
object to be fit in a single pass, while flash_xxx functions are pipeable functions that allow for
more complex flash objects to be fit incrementally (available functions are listed below under See
Also). See the vignettes and Examples for usage.

Usage

flash(
data,
S = NULL,
ebnm_fn = ebnm_point_normal,
var_type = 0L,
greedy_Kmax = 50L,
backfit = FALSE,
nullcheck = TRUE,
verbose = 1L

)

Arguments

data The observations. Usually a matrix, but can also be a sparse matrix of class
Matrix or a low-rank matrix representation as returned by, for example, svd,
irlba, rsvd, or softImpute (in general, any list that includes fields u, d, and v
will be interpreted as a low-rank matrix representation).

S The standard errors. Can be NULL (in which case all residual variance will be
estimated) or a matrix, vector, or scalar. S should be a scalar if standard errors
are identical across observations. It should be a vector if standard errors either
vary across columns but are constant within any given row, or vary across rows
but are constant within any given column (flash will use the length of the vector
to determine whether the supplied values correspond to rows or columns; if the
data matrix is square, then the sense must be specified using parameter S_dim in
function flash_init).

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

ℓ and G
(k)
f to which the priors on loadings and factors g(k)ℓ

and g
(k)
f are assumed to belong. If the same function is to be used for both load-

ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second

flash 5

the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.
Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

var_type Describes the structure of the estimated residual variance. Can be NULL, 0, 1,
2, or c(1, 2). If NULL, then S accounts for all residual variance. If var_type
= 0, then the estimated residual variance (which is added to any variance given
by S) is assumed to be constant across all observations. Setting var_type = 1
estimates a single variance parameter for each row; var_type = 2 estimates one
parameter for each column; and var_type = c(1, 2) optimizes over all rank-
one matrices (that is, it assumes that the residual variance parameter sij can be
written sij = aibj , where the n-vector a and the p-vector b are to be estimated).
Note that if any portion of the residual variance is to be estimated, then it is usu-
ally faster to set S = NULL and to let flash estimate all of the residual variance.
Further, var_type = c(1, 2) is typically much slower than other options, so it
should be used with care.

greedy_Kmax The maximum number of factors to be added. This will not necessarily be the
total number of factors added by flash, since factors are only added as long as
they increase the variational lower bound on the log likelihood for the model.

backfit A "greedy" fit is performed by adding up to greedy_Kmax factors, optimizing
each newly added factor in one go without returning to optimize previously
added factors. When backfit = TRUE, flash will additionally perform a final
"backfit" where all factors are cyclically updated until convergence. The back-
fitting procedure typically takes much longer than the greedy algorithm, but it
also usually improves the final fit to a significant degree.

nullcheck If nullcheck = TRUE, then flash will check that each factor in the final flash
object improves the overall fit. Any factor that fails the check will be removed.

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Details

If Y is an n× p data matrix, then the rank-one empirical Bayes matrix factorization model is:

Y = ℓf ′ + E,

where ℓ is an n-vector of loadings, f is a p-vector of factors, and E is an n× p matrix of residuals
(or "errors"). Additionally:

eij ∼ N(0, s2ij) : i = 1, ..., n; j = 1, ..., p

ℓ ∼ gℓ ∈ Gℓ

f ∼ gf ∈ Gf .

6 flash

The residual variance parameters s2ij are constrained to have a simple structure and are fit via maxi-
mum likelihood. (For example, one might assume that all standard errors are identical: s2ij = s2 for
some s2 and for all i, j). The functions gℓ and gf are assumed to belong to some families of priors
Gℓ and Gf that are specified in advance, and are estimated via variational approximation.

The general rank-K empirical Bayes matrix factorization model is:

Y = LF ′ + E

or
yij =

∑
k

ℓikfjk + eij : i = 1, ..., n; j = 1, ..., p,

where L is now a matrix of loadings and F is a matrix of factors.

Separate priors g(k)ℓ and g
(k)
f are estimated via empirical Bayes, and different prior families may be

used for different values of k. In general, then:

eij ∼ N(0, s2ij) : i = 1, ..., n; j = 1, ..., p

ℓik ∼ g
(k)
ℓ ∈ G

(k)
ℓ : i = 1, ..., n; k = 1, ...,K

fik ∼ g
(k)
f ∈ G

(k)
f : j = 1, ..., p; k = 1, ...,K.

Typically, G(k)
ℓ and G

(k)
f will be closed under scaling, in which case ℓk and fk are only identifiable

up to a scaling factor dk. In other words, we can write:

Y = LDF ′ + E,

where D is a diagonal matrix with diagonal entries d1, ..., dK . The model can then be made identi-
fiable by constraining the scale of ℓk and fk for k = 1, ...,K.

Value

A flash object. Contains elements:

n_factors The total number of factor/loadings pairs K in the fitted model.

pve The proportion of variance explained by each factor/loadings pair. Since factors and loadings
are not required to be orthogonal, this should be interpreted loosely: for example, the total
proportion of variance explained could be larger than 1.

elbo The variational lower bound achieved by the fitted model.

residuals_sd Estimated residual standard deviations (these include any variance component given
as an argument to S).

L_pm, L_psd, L_lfsr Posterior means, standard deviations, and local false sign rates for loadings
L.

F_pm, F_psd, F_lfsr Posterior means, standard deviations, and local false sign rates for factors
F .

L_ghat The fitted priors on loadings ĝ(k)ℓ .

F_ghat The fitted priors on factors ĝ(k)f .

flash 7

sampler A function that takes a single argument nsamp and returns nsamp samples from the pos-
terior distributions for factors F and loadings L.

flash_fit A flash_fit object. Used by flash when fitting is not performed all at once, but
incrementally via calls to various flash_xxx functions.

The following methods are available:

fitted.flash Returns the "fitted values" E(LF ′) = E(L)E(F)′.

residuals.flash Returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

ldf.flash Returns an LDF decomposition (see Details above), with columns of L and F scaled
as specified by the user.

References

Wei Wang and Matthew Stephens (2021). "Empirical Bayes matrix factorization." Journal of Ma-
chine Learning Research 22, 1–40.

See Also

flash_init, flash_greedy, flash_backfit, and flash_nullcheck. For more advanced func-
tionality, see flash_factors_init, flash_factors_fix, flash_factors_set_to_zero, flash_factors_remove,
flash_set_verbose, and flash_set_conv_crit. For extracting useful data from flash objects,
see fitted.flash, residuals.flash, and ldf.flash.

Examples

data(gtex)

Fit up to 3 factors and backfit.
fl <- flash(gtex, greedy_Kmax = 3L, backfit = TRUE)

This is equivalent to the series of calls:
fl <- flash_init(gtex) |>

flash_greedy(Kmax = 3L) |>
flash_backfit() |>
flash_nullcheck()

Fit a unimodal distribution with mean zero to each set of loadings
and a scale mixture of normals with mean zero to each factor.
fl <- flash(gtex,

ebnm_fn = c(ebnm_unimodal,
ebnm_normal_scale_mixture),

greedy_Kmax = 3)

Fit point-laplace priors using a non-default optimization method.
fl <- flash(gtex,

ebnm_fn = flash_ebnm(prior_family = "point_laplace",
optmethod = "trust"),

greedy_Kmax = 3)

Fit a "Kronecker" (rank-one) variance structure (this can be slow).

8 flash_add_intercept

fl <- flash(gtex, var_type = c(1, 2), greedy_Kmax = 3L)

flash_add_intercept Add "intercept" to a flash object

Description

Adds an all-ones vector as a fixed set of loadings (if rowwise = TRUE) or fixed factor (if rowwise =
FALSE). Assuming (without loss of generality) that the fixed factor/loadings is indexed as k = 1, a
fixed set of loadings gives:

yi· ≈ f1 +

K∑
k=2

ℓikfk,

so that the (estimated) factor f1 ∈ Rp is shared by all row-wise observations yi· ∈ Rp. A fixed
factor gives:

y·j ≈ ℓ1 +

K∑
k=2

fjkℓk,

so that the (estimated) set of loadings ℓ1 ∈ Rn is shared by all column-wise observations y·j ∈ Rn.

Usage

flash_add_intercept(flash, rowwise = TRUE, ebnm_fn = ebnm_point_normal)

Arguments

flash A flash or flash_fit object to which an "intercept" is to be added.

rowwise Should the all-ones vector be added as a fixed set of loadings ("row-wise") or a
fixed factor ("column-wise")? See above for details.

ebnm_fn As with other factor/loadings pairs, a prior is put on the estimated factor (if
rowwise = TRUE) or set of loadings (if rowwise = FALSE). Parameter ebnm_fn
specifies the function used to estimate that prior; see flash for details.

Details

The estimated factor (if rowwise = TRUE) or set of loadings (if rowwise = FALSE) is initialized
at the column- or row-wise means of the data (or, if factor/loadings pairs have previously been
added, at the column- or row-wise means of the matrix of residuals) and then backfit via function
flash_backfit.

Value

The flash object from argument flash, with an "intercept" added.

flash_backfit 9

Examples

The following are equivalent:
init <- list(matrix(rowMeans(gtex), ncol = 1),

matrix(1, nrow = ncol(gtex)))
fl <- flash_init(gtex) |>

flash_factors_init(init) |>
flash_factors_fix(kset = 1, which_dim = "factors") |>
flash_backfit(kset = 1)

fl <- flash_init(gtex) |>
flash_add_intercept(rowwise = FALSE)

flash_backfit Backfit a flash object

Description

Backfits existing flash factor/loadings pairs. Whereas a "greedy" fit optimizes each newly added
factor/loadings pair in one go without returning to optimize previously added pairs, a "backfit"
updates all existing pairs in a cyclical fashion. See flash for examples of usage.

Usage

flash_backfit(
flash,
kset = NULL,
extrapolate = TRUE,
warmstart = TRUE,
maxiter = 500,
tol = NULL,
verbose = NULL

)

Arguments

flash A flash or flash_fit object.
kset A vector of integers specifying which factors to backfit. If kset = NULL, then all

existing factors will be backfitted.
extrapolate Whether to use an extrapolation technique inspired by Ang and Gillis (2019) to

accelerate the fitting process. Control parameters are handled via global options
and can be set by calling options("extrapolate.control") <- control.param.

warmstart Whether to use "warmstarts" when solving the EBNM subproblems by initializ-
ing solutions at the previous value of the fitted prior ĝ. An important side effect
of warmstarts for ashr-like prior families is to fix the grid at its initial setting.
Fixing the grid can lead to poor fits if there are large changes in the scale of the
estimated prior over the course of the fitting process. However, allowing the grid
to vary can occasionally result in decreases in ELBO.

10 flash_clear_timeout

maxiter The maximum number of backfitting iterations. An "iteration" is defined such
that all factors in kset get updated at each iteration.

tol The convergence tolerance parameter. After each update, the fit is compared to
the fit from before the update using a convergence criterion function (by default,
the difference in ELBO, but the criterion can be changed via flash_set_conv_crit).
The backfit is considered to have "converged" when the value of the convergence
criterion function over successive updates to all factor/loadings pairs is less than
or equal to tol. If, for example, factor/loadings pairs 1, . . . ,K are being se-
quentially backfitted, then fits are compared before and after the update to fac-
tor/loadings 1, before and after the update to factor/loadings 2, and so on through
factor/loadings K, and backfitting only terminates when the convergence crite-
rion function returns a value less than or equal to tol for all K updates. Note
that specifying tol here will override any value set by flash_set_conv_crit;
to use the "global" tolerance parameter, tol must be left unspecified (NULL). If
tol = NULL and a global tolerance parameter has not been set, then the default
tolerance used is np

√
ϵ, where n is the number of rows in the dataset, p is the

number of columns, and ϵ is equal to .Machine$double.eps.

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Value

The flash object from argument flash, backfitted as specified.

flash_clear_timeout Set timeout

Description

Used in a flash pipeline to clear timeout conditions set using flash_set_timeout.

Usage

flash_clear_timeout(flash)

Arguments

flash A flash or flash_fit object.

Value

The flash object from argument flash, with timeout settings cleared.

flash_conv_crit_elbo_diff 11

flash_conv_crit_elbo_diff

Calculate the difference in ELBO

Description

The default objective function used to determine convergence when fitting a flash object. Calcu-
lates the difference in the variational lower bound ("ELBO") from one iteration to the next.

Usage

flash_conv_crit_elbo_diff(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fn in function flash_set_conv_crit
to set the convergence criterion for a flash pipeline. See flash_set_conv_crit for details and ex-
amples.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_max_chg flash_conv_crit_max_chg_L, flash_conv_crit_max_chg_F

12 flash_conv_crit_max_chg_F

flash_conv_crit_max_chg

Calculate the maximum absolute difference in scaled loadings and fac-
tors

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) loadings
ℓik and factors fjk. At each iteration, the loadings vectors ℓ·1, . . . , ℓ·K and factors f·1, . . . , f·K are
L2-normalized.

Usage

flash_conv_crit_max_chg(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg_L flash_conv_crit_max_chg_F

flash_conv_crit_max_chg_F

Calculate the maximum absolute difference in scaled factors

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) factors
fjk. At each iteration, the factors f·1, . . . , f·K are L2-normalized.

Usage

flash_conv_crit_max_chg_F(curr, prev, k)

flash_conv_crit_max_chg_L 13

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg flash_conv_crit_max_chg_L

flash_conv_crit_max_chg_L

Calculate the maximum absolute difference in scaled loadings

Description

An alternative objective function that can be used to determine convergence when fitting a flash
object. Calculates the maximum (absolute) change over all (posterior expected values for) loadings
ℓik. At each iteration, the loadings vectors ℓ·1, . . . , ℓ·K are L2-normalized.

Usage

flash_conv_crit_max_chg_L(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Value

A scalar, which is compared against the tolerance parameter tol to determine whether a fit has
converged.

See Also

flash_conv_crit_elbo_diff, flash_conv_crit_max_chg flash_conv_crit_max_chg_F

14 flash_ebnm

flash_ebnm Construct an EBNM function

Description

flash_ebnm is a helper function that provides readable syntax for constructing ebnm functions that
can serve as arguments to parameter ebnm_fn in functions flash, flash_greedy, and flash_factors_init
(see Examples below). It is also possible to write a custom function from scratch: see Details be-
low for a simple example. A more involved example can be found in the "Extending ebnm with
custom ebnm-style functions" vignette in the ebnm package.

Usage

flash_ebnm(...)

Arguments

... Parameters to be passed to function ebnm in package ebnm. An argument to
prior_family should be provided unless the default family of point-normal
priors is desired. Arguments to parameters x, s, or output must not be included.
Finally, if g_init is included, then fix_g = TRUE must be as well. To fix a prior
grid, use parameter scale rather than g_init.

Details

As input to parameter ebnm_fn in functions flash, flash_greedy, and flash_factors_init, it
should suffice for many purposes to provide functions from package ebnm as is (for example, one
might set ebnm_fn = ebnm_point_laplace). To use non-default arguments, function flash_ebnm
may be used (see Examples). Custom functions may also be written; for details, see the "Extending
ebnm with custom ebnm-style functions" vignette in the ebnm package.

Value

A function that can be passed as argument to parameter ebnm_fn in functions flash, flash_greedy,
and flash_factors_init.

See Also

ebnm

Examples

A custom EBNM function might be written as follows:
my_ebnm_fn <- function(x, s, g_init, fix_g, output) {

ebnm_res <- ebnm_point_laplace(
x = x,
s = s,
g_init = g_init,

flash_factors_fix 15

fix_g = fix_g,
output = output,
control = list(iterlim = 10)

)
return(ebnm_res)

}

The following are equivalent:
fl1 <- flash(

gtex,
ebnm_fn = my_ebnm_fn,
greedy_Kmax = 2

)
fl2 <- flash(

gtex,
ebnm_fn = flash_ebnm(

prior_family = "point_laplace",
control = list(iterlim = 10)

),
greedy_Kmax = 2

)

flash_factors_fix Fix flash factors

Description

Fixes loadings ℓ·k or factors f·k for one or more factor/loadings pairs, so that their values are not up-
dated during subsequent backfits. For a given pair, either the loadings or factor can be fixed, but not
both, and either all entries or a subset can be fixed. To unfix, use function flash_factors_unfix.
See flash_factors_init for an example of usage.

Usage

flash_factors_fix(
flash,
kset,
which_dim = c("factors", "loadings"),
fixed_idx = NULL,
use_fixed_in_ebnm = NULL

)

Arguments

flash A flash or flash_fit object.

kset A vector of integers indexing the factor/loadings pairs whose loadings or factors
are to be fixed.

16 flash_factors_init

which_dim Whether to fix factors or loadings.

fixed_idx If fixed_idx = NULL, then all loadings or factor values will be fixed. If only a
subset are to be fixed, then fixed_idx should be an appropriately-sized vector
or matrix of values that can be coerced to logical. For example, if a subset of
loadings for two factor/loadings pairs are to be fixed, then fixed_idx should be
a length-n vector or an n by 2 matrix (where n is the number of rows in the data
matrix).

use_fixed_in_ebnm

By default, fixed elements are ignored when solving the EBNM subproblem in
order to estimate the prior ĝ. This behavior can be changed by setting use_fixed_in_ebnm
= TRUE. This is a global setting which applies to all factor/loadings pairs; behav-
ior cannot vary from one factor/loadings pair to another.

Value

The flash object from argument flash, with factors or loadings fixed as specified.

flash_factors_init Initialize flash factors at specified values

Description

Initializes factor/loadings pairs at values specified by init. This function has two primary uses:
1. One can initialize multiple factor/loadings pairs at once using an SVD-like function and then
optimize them via function flash_backfit. Sometimes this results in a better fit than adding them
one at a time via flash_greedy. 2. One can initialize factor/loadings pairs and then fix the factor
(or loadings) via function flash_factors_fix to incorporate "known" factors into a flash object.
See below for examples of both use cases.

Usage

flash_factors_init(flash, init, ebnm_fn = ebnm_point_normal)

Arguments

flash A flash or flash_fit object to which factors are to be added.

init An SVD-like object (specifically, a list containing fields u, d, and v), a flash or
flash_fit object, or a list of matrices specifying the values at which factors and
loadings are to be initialized (for a data matrix of size n× p, this should be a list
of length two, with the first element a matrix of size n×k and the second a matrix
of size p× k). If a flash fit is supplied, then it will be used to initialize both the
first and second moments of posteriors on loadings and factors. Otherwise, the
supplied values will be used to initialize posterior means, with posterior second
moments initialized as the squared values of the first moments. Missing entries
are not allowed.

flash_factors_remove 17

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

ℓ and G
(k)
f to which the priors on loadings and factors g(k)ℓ

and g
(k)
f are assumed to belong. If the same function is to be used for both load-

ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second
the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.
Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

Value

The flash object from argument flash, with factors and loadings initialized as specified.

Examples

Initialize several factors at once and backfit.
fl <- flash_init(gtex) |>

flash_factors_init(init = svd(gtex, nu = 5, nv = 5)) |>
flash_backfit()

Add fixed loadings with \ell_i identically equal to one. This can be
interpreted as giving a "mean" factor that accounts for different
row-wise means.
ones <- matrix(1, nrow = nrow(gtex), ncol = 1)
Initialize the factor at the least squares solution.
ls_soln <- t(solve(crossprod(ones), crossprod(ones, gtex)))
fl <- flash_init(gtex) |>

flash_factors_init(init = list(ones, ls_soln)) |>
flash_factors_fix(kset = 1, which_dim = "loadings") |>
flash_backfit() |>
flash_greedy(Kmax = 5L)

flash_factors_remove Remove factors from a flash object

Description

Sets factor/loadings pairs to zero and then removes them from the flash object. Note that this will
change the indices of existing pairs.

Usage

flash_factors_remove(flash, kset)

18 flash_factors_set_to_zero

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factor/loadings pairs to remove.

Value

The flash object from argument flash, with the factors specified by kset removed.

See Also

flash_factors_set_to_zero

flash_factors_reorder Reorder factors in a flash object

Description

Reorders the factor/loadings pairs in a flash object.

Usage

flash_factors_reorder(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying the new order of the factor/loadings pairs. All ex-
isting factors must be included in kset; to drop factors, use flash_factors_remove.

Value

The flash object from argument flash, with the factors reordered according to argument kset.

flash_factors_set_to_zero

Set flash factors to zero

Description

Sets factor/loadings pairs to zero but does not remove them from the flash object (so as to keep
the indices of existing pairs the same).

Usage

flash_factors_set_to_zero(flash, kset)

flash_factors_unfix 19

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factor/loadings pairs to set to zero.

Value

The flash object from argument flash, with the factors specified by kset set to zero.

See Also

flash_factors_remove

flash_factors_unfix Unfix flash factors

Description

If loadings ℓ·k or factors f·k for one or more factor/loadings pairs have been "fixed" using function
flash_factors_fix, then they can be unfixed using function flash_factors_unfix.

Usage

flash_factors_unfix(flash, kset)

Arguments

flash A flash or flash_fit object.

kset A vector of integers indexing the factor/loadings pairs whose values are to be
unfixed.

Value

The flash object from argument flash, with values for the factor/loadings pairs specified by kset
unfixed.

20 flash_fit

flash_fit Extract a flash_fit object

Description

flash_fit objects are the "internal" objects used by flash functions to fit an EBMF model.
Whereas flash objects (the end results of the fitting process) include user-friendly fields and meth-
ods, flash_fit objects were not designed for public consumption and can be unwieldy. Nonethe-
less, some advanced flash functionality requires the wielding of flash_fit objects. In particular,
initialization, convergence, and "verbose" display functions all take one or more flash_fit objects
as input (see parameter init_fn in function flash_greedy; parameter fn in flash_set_conv_crit;
and parameter fns in flash_set_verbose). For users who would like to write custom functions,
the accessor functions and methods enumerated below may prove useful. See flash_set_verbose
for an example.

Usage

flash_fit(flash)

flash_fit_get_pm(f, n)

flash_fit_get_p2m(f, n)

flash_fit_get_est_tau(f)

flash_fit_get_fixed_tau(f)

flash_fit_get_tau(f)

flash_fit_get_elbo(f)

flash_fit_get_KL(f, n)

flash_fit_get_g(f, n)

Arguments

flash A flash object.

f A flash_fit object.

n Set n = 1 to access loadings L and n = 2 to access factors F).

Details

The following S3 methods are available for flash_fit objects at all times except while optimizing
new factor/loadings pairs as part of a "greedy" fit:

fitted.flash_fit Returns the "fitted values" E(LF ′) = E(L)E(F)′.

flash_greedy 21

residuals.flash_fit Returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

ldf.flash_fit Returns an LDF decomposition, with columns of L and F scaled as specified by
the user.

Value

See function descriptions below.

Functions

• flash_fit_get_pm(): The posterior means for the loadings matrix L (when parameter n is
equal to 1) or factor matrix F (when n = 2). While optimizing new factor/loadings pairs as
part of a "greedy" fit, only the posterior means for the new loadings ℓ·k or factor f·k will be
returned.

• flash_fit_get_p2m(): The posterior second moments for the loadings matrix L (when pa-
rameter n is equal to 1) or factor matrix F (when n = 2). While optimizing new factor/loadings
pairs, only the posterior second moments for the new loadings ℓ·k or factor f·k will be returned.

• flash_fit_get_est_tau(): Equal to 1/σ2, where σ2 is the estimated portion of the residual
variance (total, by row, or by column, depending on the variance type).

• flash_fit_get_fixed_tau(): Equal to 1/s2, where s2 is the fixed portion of the residual
variance (total, by row, or by column).

• flash_fit_get_tau(): The overall precision 1/(σ2 + s2).

• flash_fit_get_elbo(): The variational lower bound (ELBO).

• flash_fit_get_KL(): A vector containing the KL-divergence portions of the ELBO, with
one value for each factor (when n = 2) or set of loadings (when n = 1). While optimizing new
factor/loadings pairs, only the KL-divergence for the new factor or loadings will be returned.

• flash_fit_get_g(): A list containing estimated priors on loadings ĝℓ (when n = 1) or factors
ĝf (when n = 2). While optimizing new factor/loadings pairs, only the estimated prior on the
new factor or loadings will be returned.

flash_greedy Greedily add factors to a flash object

Description

Adds factor/loadings pairs to a flash object in a "greedy" manner. Up to Kmax pairs are added one at
a time. At each step, flash_greedy attempts to find an optimal additional (rank-one) factor given
all previously added factors. The additional factor is retained if it increases the variational lower
bound (ELBO); otherwise, fitting terminates. See flash for examples of usage.

22 flash_greedy

Usage

flash_greedy(
flash,
Kmax = 1,
ebnm_fn = ebnm_point_normal,
init_fn = NULL,
extrapolate = FALSE,
warmstart = FALSE,
maxiter = 500,
tol = NULL,
verbose = NULL

)

Arguments

flash A flash or flash_fit object to which factors are to be added.

Kmax The maximum number of factors to be added. This will not necessarily be the
total number of factors added by flash_greedy, since factors are only added as
long as they increase the ELBO.

ebnm_fn The function or functions used to solve the empirical Bayes normal means
(EBNM) subproblems. Most importantly, these functions specify the families
of distributions G(k)

ℓ and G
(k)
f to which the priors on loadings and factors g(k)ℓ

and g
(k)
f are assumed to belong. If the same function is to be used for both load-

ings L and factors F , then ebnm_fn can be a single function. If one function is
to be used for loadings and a second for factors, then ebnm_fn should be a list of
length two, with the first element giving the function for loadings and the second
the function for factors. If different functions are to be used for different values
of k, then factor/loadings pairs must be added successively using multiple calls
to either flash_greedy or flash_factors_init.
Any EBNM function provided by package ebnm can be used as input. Non-
default arguments to parameters can be supplied using the helper function flash_ebnm.
Custom EBNM functions can also be used: for details, see flash_ebnm.

init_fn The function used to initialize factor/loadings pairs. Functions flash_greedy_init_default,
flash_greedy_init_softImpute, and flash_greedy_init_irlba have been
supplied; note, in particular, that flash_greedy_init_softImpute can yield
better results than the default initialization function when there is missing data.
Custom initialization functions may also be used. If init_fn = NULL then flash_greedy_init_default
will be used, with an attempt made to set argument sign_constraints appro-
priately via test calls to the EBNM function(s) specified by parameter ebnm_fn.
If factors or loadings are constrained in some other fashion (e.g., bounded sup-
port), then the initialization function should be modified to account for the con-
straints — otherwise, the greedy algorithm can stop adding factor/loadings pairs
too early. Custom initialization functions should accept a single parameter re-
ferring to a flash_fit object and should output a list consisting of two vectors,
which will be used as initial values for the new loadings ℓ·k and the new factor
f·k. Typically, a custom initialization function will extract the matrix of resid-
uals from the flash_fit object using method residuals.flash_fit and then

flash_greedy 23

return a (possibly constrained) rank-one approximation to the matrix of residu-
als. See Examples below.

extrapolate Whether to use an extrapolation technique inspired by Ang and Gillis (2019) to
accelerate the fitting process. Control parameters are handled via global options
and can be set by calling options("extrapolate.control") <- control.param.

warmstart Whether to use "warmstarts" when solving the EBNM subproblems by initializ-
ing solutions at the previous value of the fitted prior ĝ. An important side effect
of warmstarts for ashr-like prior families is to fix the grid at its initial setting.
Fixing the grid can lead to poor fits if there are large changes in the scale of the
estimated prior over the course of the fitting process. However, allowing the grid
to vary can occasionally result in decreases in ELBO.

maxiter The maximum number of iterations when optimizing a greedily added factor/loadings
pair.

tol The convergence tolerance parameter. At each iteration, the fit is compared to
the fit from the previous iteration using a convergence criterion function (by de-
fault, the difference in ELBO, but the criterion can be changed via flash_set_conv_crit).
When the value returned by this function is less than or equal to tol, the newly
added factor/loadings pair is considered to have "converged," so that flash_greedy
moves on and attempts to add another new factor (or, if the maximum number of
factors Kmax has been reached, the process terminates). Note that specifying tol
here will override any value set by flash_set_conv_crit; to use the "global"
tolerance parameter, tol must be left unspecified (NULL). If tol = NULL and a
global tolerance parameter has not been set, then the default tolerance used is
np

√
ϵ, where n is the number of rows in the dataset, p is the number of columns,

and ϵ is equal to .Machine$double.eps.

verbose When and how to display progress updates. Set to 0 for none, 1 for updates
after a factor is added or a backfit is completed, 2 for additional notifications
about the variational lower bound, and 3 for updates after every iteration. It
is also possible to output a single tab-delimited table of values using function
flash_set_verbose with verbose = -1.

Value

The flash object from argument flash, with up to Kmax new factor/loadings pairs "greedily" added.

See Also

flash_greedy_init_default, flash_greedy_init_softImpute, flash_greedy_init_irlba

Examples

The following are examples of advanced usage. See ?flash for basic usage.

Increase the maximum number of iterations in the default initialization
method.
my_init_fn <- function(f) flash_greedy_init_default(f, maxiter = 500)
fl <- flash_init(gtex) |>

flash_greedy(init_fn = my_init_fn)

24 flash_greedy_init_default

Use a custom initialization function that wraps function nmf from
package RcppML.
nmf_init_fn <- function(f) {

nmf_res <- RcppML::nmf(resid(f), k = 1, verbose = FALSE)
return(list(as.vector(nmf_res$w), as.vector(nmf_res$h)))

}
fl.nmf <- flash_init(gtex) |>

flash_greedy(ebnm_fn = ebnm_unimodal_nonnegative,
init_fn = nmf_init_fn)

flash_greedy_init_default

Initialize a flash factor

Description

The default method for initializing the loadings ℓ·k and factor values f·k of a new ("greedy") flash
factor. It is essentially an implementation of the power method, but unlike many existing imple-
mentations, it can handle missing data and sign constraints. For details, see Chapter 2.2.3 in the
reference below.

Usage

flash_greedy_init_default(
flash,
sign_constraints = NULL,
tol = NULL,
maxiter = 100,
seed = 666

)

Arguments

flash A flash_fit object.
sign_constraints

This parameter can be used to constrain the sign of the initial factor and loadings.
It should be a vector of length two with entries equal to -1, 0, or 1. The first entry
constrains the sign of the loadings ℓ·k, with -1 yielding nonpositive loadings,
+1 yielding nonnegative loadings, and 0 indicating that loadings should not be
constrained. The second entry of sign_constraints similarly constrains the
sign of factor values f·k. If sign_constraints = NULL, then no constraints will
be applied.

tol Convergence tolerance parameter. When the maximum (absolute) change over
all values ℓik and fjk is less than or equal to tol, initialization terminates. At
each iteration, the factor and loadings are L2-normalized. The default tolerance
parameter is min(1/n, 1/p), where n is the number of rows in the data matrix
and p is the number of columns.

flash_greedy_init_irlba 25

maxiter Maximum number of power iterations.

seed Since initialization is random, a default seed is set for reproducibility.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings ℓ·k and the
vector of initial factor values f·k.

References

Jason Willwerscheid (2021), Empirical Bayes Matrix Factorization: Methods and Applications.
Ph.D. thesis, University of Chicago.

See Also

flash_greedy, flash_greedy_init_softImpute, flash_greedy_init_irlba

flash_greedy_init_irlba

Initialize a flash factor using IRLBA

Description

Initializes a new ("greedy") flash factor using irlba. This can be somewhat faster than flash_greedy_init_default
for large, dense data matrices. For sparse matrices of class Matrix, the default initialization should
generally be preferred.

Usage

flash_greedy_init_irlba(flash, seed = 666, ...)

Arguments

flash A flash_fit object.

seed Since initialization is random, a default seed is set for reproducibility.

... Additional parameters to be passed to irlba.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings ℓ·k and the
vector of initial factor values f·k.

See Also

flash_greedy, flash_greedy_init_default, flash_greedy_init_softImpute

26 flash_init

flash_greedy_init_softImpute

Initialize a flash factor using softImpute

Description

Initializes a new ("greedy") flash factor using softImpute. When there is missing data, this can
yield better results than flash_greedy_init_default without sacrificing much (if any) speed.

Usage

flash_greedy_init_softImpute(flash, seed = 666, ...)

Arguments

flash A flash_fit object.

seed Since initialization is random, a default seed is set for reproducibility.

... Additional parameters to be passed to softImpute.

Value

A list of length two consisting of, respectively, the vector of initial values for loadings ℓ·k and the
vector of initial factor values f·k.

See Also

flash_greedy, flash_greedy_init_default, flash_greedy_init_irlba

flash_init Initialize flash object

Description

Sets up a flash object with no factors. Since all other flash_xxx functions take a flash or
flash_fit object as their first argument, calling flash_init should be the first step in any flash
pipeline. See flash for examples of usage.

Usage

flash_init(data, S = NULL, var_type = 0L, S_dim = NULL)

flash_nullcheck 27

Arguments

data The observations. Usually a matrix, but can also be a sparse matrix of class
Matrix or a low-rank matrix representation as returned by, for example, svd,
irlba, rsvd, or softImpute (in general, any list that includes fields u, d, and v
will be interpreted as a low-rank matrix representation).

S The standard errors. Can be NULL (in which case all residual variance will be
estimated) or a matrix, vector, or scalar. S should be a scalar if standard errors
are identical across observations. It should be a vector if standard errors either
vary across columns but are constant within any given row, or vary across rows
but are constant within any given column (flash will use the length of the vector
to determine whether the supplied values correspond to rows or columns; if the
data matrix is square, then the sense must be specified using parameter S_dim in
function flash_init).

var_type Describes the structure of the estimated residual variance. Can be NULL, 0, 1,
2, or c(1, 2). If NULL, then S accounts for all residual variance. If var_type
= 0, then the estimated residual variance (which is added to any variance given
by S) is assumed to be constant across all observations. Setting var_type = 1
estimates a single variance parameter for each row; var_type = 2 estimates one
parameter for each column; and var_type = c(1, 2) optimizes over all rank-
one matrices (that is, it assumes that the residual variance parameter sij can be
written sij = aibj , where the n-vector a and the p-vector b are to be estimated).
Note that if any portion of the residual variance is to be estimated, then it is usu-
ally faster to set S = NULL and to let flash estimate all of the residual variance.
Further, var_type = c(1, 2) is typically much slower than other options, so it
should be used with care.

S_dim If the argument to S is a vector and the data matrix is square, then S_dim must
specify whether S encodes row-wise or column-wise standard errors. More pre-
cisely, if S_dim = 1, then S will be interpreted as giving standard errors that vary
across rows but are constant within any particular row; if S_dim = 2, then it will
be interpreted as giving standard errors that vary across columns but are constant
within any particular column. If S is a matrix or scalar, or if the data matrix is
not square, then S_dim should be left unspecified (NULL).

Value

An initialized flash object (with no factors).

flash_nullcheck Nullcheck flash factors

Description

Sets factor/loadings pairs to zero if doing so improves the variational lower bound (ELBO). See
flash for examples of usage.

28 flash_plot_bar

Usage

flash_nullcheck(flash, kset = NULL, remove = TRUE, tol = NULL, verbose = NULL)

Arguments

flash A flash or flash_fit object.

kset A vector of integers specifying which factors to nullcheck. If kset = NULL, then
all existing factors will be checked.

remove Whether to remove factors that have been set to zero from the flash object.
Note that this might change the indices of existing factors.

tol The "tolerance" parameter: if a factor does not improve the ELBO by at least
tol, then it will be set to zero. Note that flash_nullcheck does not respect
"global" tolerance parameters set by flash_set_conv_crit (which only affects
the convergence tolerance for greedy fits and backfits). The default tolerance is
np

√
ϵ, where n is the number of rows in the dataset, p is the number of columns,

and ϵ is equal to .Machine$double.eps.

verbose When and how to display progress updates. For nullchecks, updates are only
displayed when verbose > 0.

Value

The flash object from argument flash, with factors that do not improve the ELBO by at least tol
either set to zero or removed (depending on the argument to parameter remove).

See Also

flash_factors_remove, flash_factors_set_to_zero

flash_plot_bar Create bar plots of factors or loadings for a flash fit

Description

Creates a bar plot or sequence of bar plots, one for each value of k in kset, with bars corresponding
to individual posterior means for factors fjk or loadings ℓik. Values are normalized so that the
maximum absolute value for each factor f·k or set of loadings ℓ·k is equal to 1 (see ldf.flash).
This type of plot is most useful when rows i = 1, . . . , n or columns j = 1, . . . , p are small in
number or ordered in a logical fashion (e.g., spatially).

Usage

flash_plot_bar(
fl,
order_by_pve = FALSE,
kset = NULL,
pm_which = c("factors", "loadings"),

flash_plot_bar 29

pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
labels = FALSE,
...

)

Arguments

fl An object inheriting from class flash.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors A character vector specifying a color for each unique group specified by pm_groups,
or, if pm_groups = NULL, a vector specifying a color for each plotted row i or
column j. Defines the color (fill) of the bars.

labels Whether to label the bars along the x-axis. The appearance of the labels (size,
angle, etc.) can be adjusted using ggplot2’s theme system; see below for an
example.

... Additional arguments to be passed to facet_wrap (e.g., nrow or ncol).

Details

When there is more than one value of k in kset, a sequence of panels is created using the facet_wrap
function from the ggplot2 package. In each panel, the order of bars is determined by the order of
the corresponding rows or columns in the data matrix; they can be re-arranged using the pm_subset
argument.

Value

A ggplot object.

30 flash_plot_heatmap

Examples

data(gtex)
fl <- flash(gtex, greedy_Kmax = 4L, backfit = FALSE)
flash_plot_bar(fl, pm_colors = gtex_colors)

Tweaks are often required to get x-axis labels to look good:
library(ggplot2)
flash_plot_bar(fl, pm_colors = gtex_colors, labels = TRUE, ncol = 1) +

theme(axis.text.x = element_text(size = 8, angle = 60))

flash_plot_heatmap Create heatmap of factors or loadings for a flash fit

Description

Creates a heatmap of posterior means for factors fjk or loadings ℓik. Values are normalized so that
the maximum absolute value for each factor f·k or set of loadings ℓ·k is equal to 1 (see ldf.flash).

Usage

flash_plot_heatmap(
fl,
order_by_pve = FALSE,
kset = NULL,
pm_which = c("factors", "loadings"),
pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
gap = 1,
...

)

Arguments

fl An object inheriting from class flash.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

flash_plot_histogram 31

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors A character vector of length 1, 2, or 3 defining the diverging color gradient (low-
mid-high) to be used by the heatmap. The midpoint is set at zero. If one or two
colors are supplied, then the "mid" color will be set to white. If one color is
supplied, then the "low" and "high" colors (used for, respectively, negative and
positive posterior means) will be the same. If two are supplied, then the "low"
color should be provided first, followed by the "high" color. If all three are sup-
plied, then the "low" color should be provided first, followed by the "mid" color,
followed by the "high" color provided. The default color gradient is darkblue
for "low" (negative posterior means), white for "mid" (zero), and darkred for
"high" (positive posterior means).

gap The horizontal spacing between groups. Ignored if pm_groups is not provided.

... Additional parameters to be passed to structure_plot (which is primarily used
to arrange the rows i or columns j).

Details

By default, a 1-d embedding is used to arrange the rows i or columns j in a "smart" manner. This be-
havior can be overridden via argument loadings_order, which is passed to function structure_plot.

Value

A ggplot object.

flash_plot_histogram Create histograms of factors or loadings for a flash fit

Description

Creates a histogram or sequence of histograms of posterior means for factors fjk or loadings ℓik.
One plot is created for each value of k in kset. Values are normalized so that the maximum absolute
value for each factor f·k or set of loadings ℓ·k is equal to 1 (see ldf.flash). If pm_groups is
specified, then overlapping semi-transparent histograms are created, with one histogram per group
specified by pm_groups. This option works best when the number of groups is small or when groups
are well separated across components.

Usage

flash_plot_histogram(
fl,
order_by_pve = FALSE,
kset = NULL,

32 flash_plot_histogram

pm_which = c("factors", "loadings"),
pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
binwidth = NULL,
bins = NULL,
alpha = 0.5,
...

)

Arguments

fl An object inheriting from class flash.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors A character vector specifying a color for each unique group specified by pm_groups.
Defines the color and fill of the histograms.

binwidth The width of the bins (a numeric value). The default is to use the number of bins
in bins, covering the range of the data.

bins Number of bins. Overriden by binwidth. Defaults to 30.

alpha A transparency value between 0 (transparent) and 1 (opaque).

... Additional arguments to be passed to facet_wrap (e.g., nrow or ncol).

Value

A ggplot object.

flash_plot_scatter 33

flash_plot_scatter Create scatter plots of factors or loadings for a flash fit

Description

Creates a scatter plot or sequence of scatter plots, with position along the x-axis defined by posterior
means for factors fjk or loadings ℓik and position along the y-axis defined by a user-supplied
covariate. If a covariate is not supplied, then plots will use data column or row means, 1

n

∑n
i=1 yij

or 1
p

∑p
j=1 yij . One plot is created for each value of k in kset. Values are normalized so that the

maximum absolute value for each factor f·k or set of loadings ℓ·k is equal to 1 (see ldf.flash).

Usage

flash_plot_scatter(
fl,
order_by_pve = FALSE,
kset = NULL,
pm_which = c("factors", "loadings"),
pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
covariate = NULL,
shape = 1,
labels = FALSE,
n_labels = 0,
label_size = 3,
max_overlaps = Inf,
...

)

Arguments

fl An object inheriting from class flash.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

34 flash_plot_scatter

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors A character vector specifying a color for each unique group specified by pm_groups,
or, if pm_groups = NULL, a vector specifying a color for each plotted row i or
column j. Defines the colors of the points.

covariate A numeric vector with one value for each plotted row i or column j. These
values are mapped onto the plots’ y-axis.

shape The symbol used for the plots’ points. See aes_linetype_size_shape.

labels Whether to label the points with the largest (absolute) posterior means. If labels
= TRUE, then n_labels points will be labelled using geom_text_repel.

n_labels A (nonnegative) integer. The number of points to label. If n_labels is set to a
positive integer but labels = FALSE, then the n_labels points with the largest
(absolute) posterior means will be highlighted in blue but not labelled. This
can be useful for tweaking labels using the full range of options provided by
geom_text_repel. For an example, see below.

label_size The size of the label text (in millimeters).

max_overlaps A (nonnegative) integer. For each text label, the number of overlaps with other
text labels or other data points are counted, and the text label is excluded if it
has too many overlaps.

... Additional arguments to be passed to facet_wrap (e.g., nrow or ncol).

Value

A ggplot object.

Examples

data(gtex)
fl <- flash(gtex, greedy_Kmax = 4L, backfit = FALSE)
flash_plot_scatter(fl)

Label axes and points:
library(ggplot2)
flash_plot_scatter(fl, labels = TRUE, n_labels = 3) +

labs(y = "mean z-score across all SNPs")

For the full range of labelling options provided by the ggrepel package, set
labels = FALSE (the default setting) and add geom_text_repel() manually:
library(ggrepel)
flash_plot_scatter(fl, labels = FALSE, n_labels = 3) +

geom_text_repel(size = 2.5, min.segment.length = 0)

flash_plot_scree 35

flash_plot_scree Create a scree plot for a flash fit

Description

A scree plot is a line plot showing the proportion of variance explained by each factor/loadings
pair in a flash fit. Note that since EBMF does not require factors and loadings to be orthogonal,
"PVE" should be interpreted loosely: for example, the total proportion of variance explained could
be larger than 1.

Usage

flash_plot_scree(
fl,
order_by_pve = FALSE,
kset = NULL,
labels = FALSE,
label_size = 3,
max_overlaps = Inf

)

Arguments

fl An object inheriting from class flash.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

labels Whether to label the points in the scree plot with the indices of the factor/loading
pairs they correspond to. Labels appear as "k1", "k2", "k3", etc.

label_size The size of the label text (in millimeters).

max_overlaps A (nonnegative) integer. For each text label, the number of overlaps with other
text labels or other data points are counted, and the text label is excluded if it
has too many overlaps.

Details

Unlike scree plots for PCA, a scree plot for a flash fit is not in general monotonically decreasing.
To ensure a monotonically decreasing scree plot, set order_by_pve = TRUE. Note, however, that if
this is done then the numbers on the x-axis will no longer match the indices of the components in
the flash fit. This can also be true if argument kset has been specified. Thus one should consider
setting labels = TRUE when order_by_pve = TRUE or when kset has been specified.

36 flash_plot_structure

Value

A ggplot object.

Examples

data(gtex)
fl <- flash(gtex, greedy_Kmax = 4L, backfit = FALSE)
flash_plot_scree(fl)

For the full range of labelling options provided by the ggrepel package, set
labels = FALSE (the default setting) and add geom_text_repel() manually:
library(ggrepel)
flash_plot_scree(fl) + geom_text_repel(min.segment.length = 0)

flash_plot_structure Create structure plot of factors or loadings for a flash fit

Description

Creates a “structure plot” (stacked bar plot) of posterior means for factors fjk or loadings ℓik.
Different “topics” or components (that is, the different factor/loadings pairs, as specified by kset)
are represented by different colors. Values are normalized so that the maximum absolute value
for each factor f·k or set of loadings ℓ·k is equal to 1 and then stacked (see ldf.flash). Note
that structure plots were designed for nonnegative loadings or “memberships”; if posterior means
are not nonnegative then a different type of plot should be used (e.g., flash_plot_heatmap). By
default, a 1-d embedding is used to arrange the rows i or columns j. This step is usually essential
to creating a readable structure plot; for details, see structure_plot.

Usage

flash_plot_structure(
fl,
order_by_pve = FALSE,
kset = NULL,
pm_which = c("factors", "loadings"),
pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
gap = 1,
...

)

Arguments

fl An object inheriting from class flash.

flash_set_conv_crit 37

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors The colors of the “topics” or components (factor/loadings pairs).

gap The horizontal spacing between groups. Ignored if pm_groups is not provided.

... Additional parameters to be passed to structure_plot.

Value

A ggplot object.

flash_set_conv_crit Set convergence criterion and tolerance parameter

Description

Used in a flash pipeline to set the criterion for determining whether a greedy fit or backfit has
"converged."

Usage

flash_set_conv_crit(flash, fn = NULL, tol)

Arguments

flash A flash or flash_fit object.

fn The convergence criterion function (see Details below). If NULL, then only the
tolerance parameter is updated (thus a convergence criterion can be set at the
beginning of a flash pipeline, allowing the tolerance parameter to be updated
at will without needing to re-specify the convergence criterion each time). The
default convergence criterion, which is set when the flash object is initialized,
is flash_conv_crit_elbo_diff, which calculates the difference in the varia-
tional lower bound or "ELBO" from one iteration to the next.

38 flash_set_conv_crit

tol The tolerance parameter (see Details below). The default, which is set when the
flash object is initialized (see flash_init), is np

√
ϵ, where n is the number of

rows in the dataset, p is the number of columns, and ϵ is equal to .Machine$double.eps.

Details

Function flash_set_conv_crit can be used to customize the convergence criterion for a flash
object. This criterion determines when to stop optimizing a newly added factor (see flash_greedy)
and when to stop backfitting (flash_backfit). Note that, because most alternative convergence
criteria do not make sense in the context of a nullcheck, it does not set the "convergence" crite-
rion for flash_nullcheck (for example, flash_conv_crit_max_chg_L would simply return the
maximum L2-normalized loading for each set of loadings ℓ·k).

The criterion is defined by the function supplied as argument to fn, which must accept exactly three
parameters, curr, prev, and k. curr refers to the flash_fit object from the current iteration; prev,
to the flash_fit object from the previous iteration; and, if the iteration is a sequential backfitting
iteration (that is, a flash_backfit iteration with argument extrapolate = FALSE), k identifies the
factor/loadings pair that is currently being updated (in all other cases, k is NULL). The function
must output a numeric value; if the value is less than or equal to tol, then the fit is considered
to have "converged." The meaning of "convergence" here varies according to the operation being
performed. In the greedy algorithm, fn simply compares the fit from one iteration to the next.
During a backfit, it similarly compares fits from one iteration to the next, but it only considers the
fit to have converged when the value of fn over successive updates to all factor/loadings pairs is
less than or equal to tol. If, for example, factor/loadings pairs 1, . . . ,K are being sequentially
backfitted, then fits are compared before and after the update to factor/loadings 1, before and after
the update to factor/loadings 2, and so on through factor/loadings K, and backfitting only terminates
when fn returns a value less than or equal to tol for all K updates.

Package flashier provides a number of functions that may be supplied as convergence criteria: see
flash_conv_crit_elbo_diff (the default criterion), flash_conv_crit_max_chg, flash_conv_crit_max_chg_L,
and flash_conv_crit_max_chg_F. Custom functions may also be defined. Typically, they will
compare the fit in curr (the current iteration) to the fit in prev (the previous iteration). To facilitate
working with flash_fit objects, package flashier provides a number of accessors, which are
enumerated in the documentation for object flash_fit. Custom functions should return a numeric
value that can be compared against tol; see Examples below.

Value

The flash object from argument flash, with the new convergence criterion reflected in updates to
the "internal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx
functions in the same flash pipeline (unless, of course, flash_set_conv_crit is again called
within the same pipeline).

Examples

fl <- flash_init(gtex) |>
flash_set_conv_crit(flash_conv_crit_max_chg, tol = 1e-3) |>
flash_set_verbose(
verbose = 3,
fns = flash_verbose_max_chg,
colnames = "Max Chg",

flash_set_timeout 39

colwidths = 20
) |>
flash_greedy(Kmax = 3)

flash_set_timeout Set timeout

Description

Used in a flash pipeline to set a maximum amount of fitting time. Note that timeout conditions
are only checked during greedy fits and backfits, so that the total amount of fitting time can ex-
ceed the time set by flash_set_timeout (especially if, for example, there is a nullcheck involv-
ing many factor/loading pairs). Also note that timeout conditions must be cleared using function
flash_clear_timeout before any re-fitting is attempted.

Usage

flash_set_timeout(
flash,
tim,
units = c("hours", "secs", "mins", "days", "weeks")

)

Arguments

flash A flash or flash_fit object.

tim A numeric value giving the maximum amount of fitting time, with the units of
time specified by parameter units.

units The units of time according to which parameter tim is to be interpreted.

Value

The flash object from argument flash, with the timeout settings reflected in updates to the "in-
ternal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx func-
tions until they are modified either by flash_clear_timeout or by another call to flash_set_timeout.

Examples

fl <- flash_init(gtex) |>
flash_set_timeout(1, "secs") |>
flash_greedy(Kmax = 30) |>
flash_backfit() |>
flash_nullcheck() |>
flash_clear_timeout() # Always clear timeout at the end of a pipeline.

40 flash_set_verbose

flash_set_verbose Set verbose output

Description

Used in a flash pipeline to set the output that will be printed after each greedy or backfitting
iteration.

Usage

flash_set_verbose(
flash,
verbose = 1L,
fns = NULL,
colnames = NULL,
colwidths = NULL

)

Arguments

flash A flash or flash_fit object.

verbose When and how to display progress updates. Set to 0 for no updates; 1 for up-
dates after a "greedy" factor is added or a backfit is completed; 2 for additional
notifications about the variational lower bound (ELBO); and 3 for updates after
every iteration. By default, per-iteration update information includes the change
in ELBO and the maximum (absolute) change over all L2-normalized loadings
ℓ1, . . . , ℓK and factors f1, . . . , fK . Update information is customizable via pa-
rameters fns, colnames, and colwidths.
A single tab-delimited table of values may also be output using option verbose
= -1. This format is especially convenient for downstream analysis of the fitting
history. For example, it may be used to plot the value of the ELBO after each
iteration (see the "Advanced Flashier" vignette for an illustration).

fns A vector of functions. Used to calculate values to display after each greedy/backfit
iteration when verbose is either -1 or 3 (see Details below). Ignored for other
values of verbose (0, 1, or 2).

colnames A vector of column names, one for each function in fns.

colwidths A vector of column widths, one for each function in fns.

Details

Function flash_set_verbose can be used to customize the output that is printed to console while
fitting a flash object. After each greedy or backfitting iteration (see, respectively, flash_greedy
and flash_backfit), each function in argument fns is successively evaluated and the result is
printed to console in a table with column names defined by argument colnames and column widths
defined by argument colwidths.

flash_set_verbose 41

Each function in fns must accept exactly three parameters, curr, prev, and k: curr refers to
the flash_fit object from the current iteration; prev, to the flash_fit object from the previous
iteration; and, if the iteration is a sequential backfitting iteration (that is, a flash_backfit iter-
ation with argument extrapolate = FALSE), k identifies the factor/loadings pair that is currently
being updated (in all other cases, k is NULL). Package flashier provides a number of functions
that may be used to customize output: see flash_verbose_elbo, flash_verbose_elbo_diff,
flash_verbose_max_chg, flash_verbose_max_chg_L, and flash_verbose_max_chg_F. Custom
functions may also be defined. They might inspect the current flash_fit object via argument curr;
compare the fit in curr to the fit from the previous iteration (provided by argument prev); or ignore
both flash_fit objects entirely (for example, to track progress over time, one might simply call
Sys.time). To facilitate working with flash_fit objects, package flashier provides a number
of accessors, which are enumerated in the documentation for object flash_fit. Custom functions
should return a character string that contains the output exactly as it is to displayed; see Examples
below.

Value

The flash object from argument flash, with the new verbose settings reflected in updates to the
"internal" flash_fit object. These settings will persist across all subsequent calls to flash_xxx
functions until they are modified by another call to flash_set_verbose.

Examples

Suppress all verbose output.
fl <- flash_init(gtex) |>

flash_set_verbose(0) |>
flash_greedy(Kmax = 5)

Set custom verbose output.
sparsity_F <- function(curr, prev, k) {

g_F <- flash_fit_get_g(curr, n = 2)
g_F_pi0 <- g_F$pi[1] # Mixture weight of the "null" component.
return(g_F_pi0)

}
verbose_fns <- c(flash_verbose_elbo, flash_verbose_max_chg_F, sparsity_F)
colnames <- c("ELBO", "Max Chg (Tiss)", "Sparsity (Tiss)")
colwidths <- c(12, 18, 18)
fl <- flash_init(gtex) |>

flash_set_verbose(
verbose = 3,
fns = verbose_fns,
colnames = colnames,
colwidths = colwidths

) |>
flash_greedy(Kmax = 3)

Output can be changed as needed.
fl <- flash_init(gtex) |>

flash_set_verbose(verbose = 1) |>
flash_greedy(Kmax = 5L) |>
flash_backfit(verbose = 3) |>

42 flash_update_data

flash_greedy(Kmax = 1L)

flash_update_data Update data in a flash object

Description

Replaces the data in a flash object with a new set of observations. Estimates of residual variances
and the ELBO are also updated.

Usage

flash_update_data(flash, newdata, Y2_diff = NULL)

Arguments

flash A flash or flash_fit object.

newdata The new observations. Can be a matrix, a sparse matrix of class Matrix, or a
low-rank matrix representation.

Y2_diff Optionally, users can supply the (summed) changes in the squared values of the
data y2ij , which are needed to estimate the residual variance parameters s2ij for
simple variance structures (i.e., when var_type is set to 0, 1, or 2). If calcu-
lating entries y2ij from scratch is expensive, supplying an argument to Y2_diff
can greatly speed up data updates. If specified, the argument should be a scalar∑

i,j

(
y2(new)
ij − y2(old)

ij

)
when var_type = 0; a vector of length n with entries∑p

j=1

(
y2(new)
ij − y2(old)

ij

)
when var_type = 1; or a vector of length p with en-

tries
∑n

i=1

(
y2(new)
ij − y2(old)

ij

)
when var_type = 2. The argument is ignored

when any other variance structure is used.

Value

The flash object from argument flash, with the data modified as specified by newdata. Residual
variances and ELBO are also updated.

flash_verbose_elbo 43

flash_verbose_elbo Display the current ELBO

Description

Displays the value of the variational lower bound (ELBO) at the current iteration.

Usage

flash_verbose_elbo(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_elbo_diff

Display the difference in ELBO

Description

Displays the difference in the variational lower bound (ELBO) from one iteration to the next.

Usage

flash_verbose_elbo_diff(curr, prev, k)

44 flash_verbose_max_chg

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_max_chg, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_max_chg Display the maximum difference in scaled loadings and factors

Description

Displays the maximum (absolute) change over all (posterior expected values for) loadings ℓik and
factors fjk. At each iteration, the loadings vectors ℓ·1, . . . , ℓ·K and factors f·1, . . . , f·K are L2-
normalized.

Usage

flash_verbose_max_chg(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

flash_verbose_max_chg_F 45

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg_L, flash_verbose_max_chg_F

flash_verbose_max_chg_F

Display the maximum difference in scaled factors

Description

Displays the maximum (absolute) change over all (posterior expected values for) factors fjk. At
each iteration, the factors f·1, . . . , f·K are L2-normalized.

Usage

flash_verbose_max_chg_F(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.

prev The flash_fit object from the previous iteration.

k Only used during sequential backfits (that is, calls to flash_backfit where
extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_L

46 gtex

flash_verbose_max_chg_L

Display the maximum difference in scaled loadings

Description

Displays the maximum (absolute) change over all (posterior expected values for) loadings ℓik. At
each iteration, the loadings vectors ℓ·1, . . . , ℓ·K are L2-normalized.

Usage

flash_verbose_max_chg_L(curr, prev, k)

Arguments

curr The flash_fit object from the current iteration.
prev The flash_fit object from the previous iteration.
k Only used during sequential backfits (that is, calls to flash_backfit where

extrapolate = FALSE). It then takes the index of the factor/loadings pair cur-
rently being optimized.

Details

This function is an example of a function that may be passed to parameter fns in function flash_set_verbose
to customize the output that is printed after each greedy or backfitting iteration. See flash_set_verbose
for details and examples.

Value

A character string, suitable for printing progress updates.

See Also

flash_verbose_elbo, flash_verbose_elbo_diff, flash_verbose_max_chg, flash_verbose_max_chg_F

gtex GTEx data

Description

Derived from data made available by the Genotype Tissue Expression (GTEx) project (Lonsdale et
al. 2013), which provides z-scores for assessing the significance of effects of genetic variants (single
nucleotide polymorphisms, or SNPs) on gene expression across 44 human tissues. To reduce the
data to a more manageable size, Urbut et al. (2019) chose the "top" SNP for each gene — that is,
the SNP associated with the largest (absolute) z-score over all 44 tissues. This yields a 16, 069 ×
44 matrix of z-scores, with rows corresponding to SNP-gene pairs and columns corresponding to
tissues. The dataset included here is further subsampled down to 1000 rows.

gtex_colors 47

Format

gtex is a matrix with 1000 rows and 44 columns, with rows corresponding to SNP-gene pairs and
columns corresponding to tissues.

Source

https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.
Z.rds

References

Lonsdale et al. (2013). "The Genotype-Tissue Expression (GTEx) project." Nature Genetics 45(6),
580–585.

Urbut, Wang, Carbonetto, and Stephens (2019). "Flexible statistical methods for estimating and
testing effects in genomic studies with multiple conditions." Nature Genetics 51(1), 187–195.

Examples

data(gtex)
summary(gtex)

gtex_colors Colors for plotting GTEx data

Description

A custom palette used by Wang and Stephens (2021) to plot an empirical Bayes matrix factorization
of data from the GTEx project (of which the gtex data in package flashier is a subsample). The
palette is designed to link similar tissues together visually. For example, brain tissues all have the
same color (yellow); arterial tissues are shades of pink or red; etc.

Format

gtex_colors is a named vector of length 44, with names corresponding to tissues (columns) in the
gtex dataset and values giving hexadecimal color codes.

Source

https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt

References

Wei Wang and Matthew Stephens (2021). "Empirical Bayes matrix factorization." Journal of Ma-
chine Learning Research 22, 1–40.

https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds
https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds
https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt

48 ldf

Examples

fl <- flash(gtex, greedy_Kmax = 4)
plot(fl, pm_colors = gtex_colors)

ldf LDF method for flash and flash fit objects

Description

Given a flash or flash_fit object, returns the LDF decomposition Y ≈ LDF ′.

Usage

ldf(object, type)

S3 method for class 'flash'
ldf(object, type = "f")

S3 method for class 'flash_fit'
ldf(object, type = "f")

Arguments

object An object inheriting from class flash or flash_fit.
type Takes identical arguments to function norm. Use "f" or "2" for the 2-norm

(Euclidean norm); "o" or "1" for the 1-norm (taxicab norm); and "i" or "m" for
the infinity norm (maximum norm).

Details

When the prior families G(k)
ℓ and G

(k)
f are closed under scaling (as is typically the case), then the

EBMF model (as described in the documention to function flash) is only identifiable up to scaling
by a diagonal matrix D:

Y = LDF ′ + E.

Method ldf scales columns ℓk and fk so that, depending on the argument to parameter type, their
1-norms, 2-norms, or infinity norms are equal to 1.

Value

A list with fields L, D, and F, each of which corresponds to one of the matrices in the decomposition
Y ≈ LDF ′ (with the columns of L and F scaled according to argument type). Note that D is
returned as a vector rather than a matrix (the vector of diagonal entries in D). Thus, "fitted values"
LDF ′ can be recovered as L %*% diag(D) %*% t(F).

Methods (by class)

• ldf(flash): LDF decomposition for flash objects
• ldf(flash_fit): LDF decomposition for flash_fit objects

plot.flash 49

plot.flash Plot method for flash objects

Description

Plots a flash object. Several types of plot are possible: see parameter plot_type below as well as
functions flash_plot_scree, flash_plot_bar, flash_plot_heatmap, flash_plot_histogram,
flash_plot_scatter, and flash_plot_structure.

Usage

S3 method for class 'flash'
plot(
x,
include_scree = TRUE,
include_pm = TRUE,
order_by_pve = FALSE,
kset = NULL,
pm_which = c("factors", "loadings"),
pm_subset = NULL,
pm_groups = NULL,
pm_colors = NULL,
plot_type = c("scree", "bar", "heatmap", "histogram", "scatter", "structure"),
...

)

Arguments

x An object inheriting from class flash.

include_scree [Deprecated] This parameter has been deprecated; please use plot_type in-
stead.

include_pm [Deprecated] This parameter has been deprecated; please use plot_type in-
stead.

order_by_pve If order_by_pve = TRUE, then factor/loadings pairs will be ordered according to
proportion of variance explained, from highest to lowest. (By default, they are
plotted in the same order as kset; or, if kset is NULL, then they are plotted in
the same order as they are found in fl.)

kset A vector of integers specifying the factor/loadings pairs to be plotted. If order_by_pve
= FALSE, then kset also specifies the order in which they are to be plotted.

pm_which Whether to plot loadings L or factors F .

pm_subset A vector of row indices i or column indices j (depending on the argument to
pm_which) specifying which values ℓi· or fj· are to be shown. If the dataset
has row or column names, then names rather than indices may be specified. If
pm_subset = NULL, then all values will be plotted.

50 residuals.flash

pm_groups A vector specifying the group to which each row of the data yi· or column y·j
belongs (groups may be numeric indices or strings). A group must be provided
for each plotted row i or column j, so that the length of pm_groups is exactly
equal to the number of rows or columns in the full dataset or, if pm_subset is
specified, in the subsetted dataset.

pm_colors A character vector specifying a color for each unique group specified by pm_groups,
or, if pm_groups = NULL, a vector specifying a color for each plotted row i or
column j. For effects, see parameter plot_type.

plot_type The type of plot to return. Options include:

"scree" A scree plot showing the proportion of variance explained per fac-
tor/loadings pair. See flash_plot_scree.

"bar" A bar plot of posterior means for loadings or factors (depending on ar-
gument pm_which), with one bar per row or column. Colors of bars are
specified by argument pm_colors. This type of plot is most useful when
rows or columns are small in number or ordered in a logical fashion (e.g.,
spatially). See flash_plot_bar.

"heatmap" A heatmap showing posterior means for loadings or factors, with
rows or columns grouped using a 1-d embedding. Here pm_color specifies
the diverging color gradient (low-mid-high). See flash_plot_heatmap.

"histogram" Overlapping semi-transparent histograms of posterior means for
loadings or factors, with one histogram per group specified by pm_groups
(or a single histogram if pm_groups is NULL). Colors of histograms are spec-
ified by pm_colors. See flash_plot_histogram.

"scatter" A scatter plot showing the relationship between posterior means
for loadings or factors and a user-supplied covariate. If a covariate is not
supplied, then data column or row means will be used. Colors of points are
specified by pm_colors. See flash_plot_scatter.

"structure" A "structure plot" (stacked bar plot) produced using function
structure_plot in package fastTopics. Here pm_colors specifies the
colors of different factor/loadings pairs (as specified by kset) rather than
different groups (as specified by pm_groups). Note that factors/loadings
must be nonnegative for structure plots to make sense. See flash_plot_structure.

... Additional parameters to be passed to respective flash_plot_xxx functions.
See flash_plot_scree, flash_plot_bar, flash_plot_heatmap, flash_plot_histogram,
flash_plot_scatter, and flash_plot_structure for details.

Value

A ggplot object.

residuals.flash Residuals method for flash objects

Description

Given a flash object, returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

residuals.flash_fit 51

Usage

S3 method for class 'flash'
residuals(object, ...)

Arguments

object An object inheriting from class flash.

... Additional parameters are ignored.

Value

The matrix of expected residuals.

residuals.flash_fit Residuals method for flash fit objects

Description

Given a flash_fit object, returns the expected residuals Y − E(LF ′) = Y − E(L)E(F)′.

Usage

S3 method for class 'flash_fit'
residuals(object, ...)

Arguments

object An object inheriting from class flash_fit.

... Additional parameters are ignored.

Value

The matrix of expected residuals.

Index

∗ data
gtex, 46
gtex_colors, 47

.Machine, 10, 23, 28, 38

aes_linetype_size_shape, 34

ebnm, 5, 14, 17, 22

facet_wrap, 29, 32, 34
fitted.flash, 3, 7
fitted.flash_fit, 3, 20
flash, 3, 4, 8–14, 16–19, 21, 23, 26–28,

37–42, 48–50
flash_add_intercept, 8
flash_backfit, 7, 8, 9, 11–13, 16, 38, 40, 41,

43–46
flash_clear_timeout, 10, 39
flash_conv_crit_elbo_diff, 11, 12, 13, 37,

38
flash_conv_crit_max_chg, 11, 12, 13, 38
flash_conv_crit_max_chg_F, 11, 12, 12, 13,

38
flash_conv_crit_max_chg_L, 11–13, 13, 38
flash_ebnm, 5, 14, 17, 22
flash_factors_fix, 7, 15, 16, 19
flash_factors_init, 5, 7, 14, 15, 16, 17, 22
flash_factors_remove, 7, 17, 18, 19, 28
flash_factors_reorder, 18
flash_factors_set_to_zero, 7, 18, 18, 28
flash_factors_unfix, 15, 19
flash_fit, 3, 7, 11–13, 20, 22, 38, 41, 43–46,

48, 51
flash_fit_get_elbo (flash_fit), 20
flash_fit_get_est_tau (flash_fit), 20
flash_fit_get_fixed_tau (flash_fit), 20
flash_fit_get_g (flash_fit), 20
flash_fit_get_KL (flash_fit), 20
flash_fit_get_p2m (flash_fit), 20
flash_fit_get_pm (flash_fit), 20

flash_fit_get_tau (flash_fit), 20
flash_greedy, 5, 7, 14, 16, 17, 20, 21, 22, 25,

26, 38, 40
flash_greedy_init_default, 22, 23, 24, 25,

26
flash_greedy_init_irlba, 22, 23, 25, 25,

26
flash_greedy_init_softImpute, 22, 23, 25,

26
flash_init, 4, 7, 26, 27, 38
flash_nullcheck, 7, 27, 38
flash_plot_bar, 28, 49, 50
flash_plot_heatmap, 30, 36, 49, 50
flash_plot_histogram, 31, 49, 50
flash_plot_scatter, 33, 49, 50
flash_plot_scree, 35, 49, 50
flash_plot_structure, 36, 49, 50
flash_set_conv_crit, 7, 10, 11, 20, 23, 28,

37
flash_set_timeout, 10, 39
flash_set_verbose, 5, 7, 10, 20, 23, 40,

43–46
flash_update_data, 42
flash_verbose_elbo, 41, 43, 44–46
flash_verbose_elbo_diff, 41, 43, 43, 45,

46
flash_verbose_max_chg, 41, 43, 44, 44, 45,

46
flash_verbose_max_chg_F, 41, 43–45, 45,

46
flash_verbose_max_chg_L, 41, 43–45, 46

geom_text_repel, 34
gtex, 46, 47
gtex_colors, 47

irlba, 4, 25, 27

ldf, 48
ldf.flash, 7, 28, 30, 31, 33, 36

52

INDEX 53

ldf.flash_fit, 21

Matrix, 4, 27, 42

norm, 48

plot.flash, 49

residuals.flash, 7, 50
residuals.flash_fit, 21, 51
rsvd, 4, 27

softImpute, 4, 26, 27
structure_plot, 31, 36, 37, 50
svd, 4, 27
Sys.time, 41

	fitted.flash
	fitted.flash_fit
	flash
	flash_add_intercept
	flash_backfit
	flash_clear_timeout
	flash_conv_crit_elbo_diff
	flash_conv_crit_max_chg
	flash_conv_crit_max_chg_F
	flash_conv_crit_max_chg_L
	flash_ebnm
	flash_factors_fix
	flash_factors_init
	flash_factors_remove
	flash_factors_reorder
	flash_factors_set_to_zero
	flash_factors_unfix
	flash_fit
	flash_greedy
	flash_greedy_init_default
	flash_greedy_init_irlba
	flash_greedy_init_softImpute
	flash_init
	flash_nullcheck
	flash_plot_bar
	flash_plot_heatmap
	flash_plot_histogram
	flash_plot_scatter
	flash_plot_scree
	flash_plot_structure
	flash_set_conv_crit
	flash_set_timeout
	flash_set_verbose
	flash_update_data
	flash_verbose_elbo
	flash_verbose_elbo_diff
	flash_verbose_max_chg
	flash_verbose_max_chg_F
	flash_verbose_max_chg_L
	gtex
	gtex_colors
	ldf
	plot.flash
	residuals.flash
	residuals.flash_fit
	Index

